This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.
Group information
Description: | $\SL(2,3) \rtimes (C_2^2\times C_{16})$ | |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) | |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | |
Automorphism group: | Group of order 24576 | |
Derived length: | $4$ |
This group is nonabelian and solvable. Whether it is metacyclic, monomial, or rational has not been computed.
Group statistics
Order | 1 | 2 | 3 | 4 | 6 | 8 | 12 | 16 | 24 | 48 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | 1 | 55 | 8 | 104 | 56 | 352 | 64 | 512 | 128 | 256 | 1536 | |
Conjugacy classes | 1 | 11 | 1 | 20 | 7 | 64 | 8 | 96 | 16 | 32 | 256 | |
Divisions | data not computed | |||||||||||
Autjugacy classes | data not computed |
Dimension | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Irr. complex chars. | 64 | 96 | 64 | 32 | 256 |
Constructions
Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j \mid a^{2}=b^{3}=c^{2}=g^{2}=j^{2}= \!\cdots\! \rangle}$
| |||||
Aut. group: | $\Aut(C_3\times C_{192})$ | $\Aut(C_3\times C_{204})$ |
Homology
Abelianization: | $C_{2}^{2} \times C_{16} $ |
Subgroups
Center: | $Z \simeq$ $C_2^2\times C_{16}$ | $G/Z \simeq$ $S_4$ | |
Commutator: | $G' \simeq$ $\SL(2,3)$ | $G/G' \simeq$ $C_2^2\times C_{16}$ | |
Frattini: | $\Phi \simeq$ $C_2\times C_8$ | $G/\Phi \simeq$ $C_2^2\times S_4$ | |
Fitting: | $\operatorname{Fit} \simeq$ $C_2\times Q_8\times C_{16}$ | $G/\operatorname{Fit} \simeq$ $S_3$ | |
Radical: | $R \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_{16})$ | $G/R \simeq$ $C_1$ | |
Socle: | $S \simeq$ $C_2^3$ | $G/S \simeq$ $C_8\times S_4$ | |
2-Sylow subgroup: | $P_{2} \simeq$ $(C_4\times C_8) . C_2^4$ | ||
3-Sylow subgroup: | $P_{3} \simeq$ $C_3$ | ||
Maximal subgroups: | $M_{2,1} \simeq$ $(C_2\times Q_8\times C_{16}) \rtimes C_3$ | $G/M_{2,1} \simeq$ $C_2$ | |
$M_{2,2} \simeq$ $\SL(2,3) \rtimes (C_2\times C_{16})$ | $G/M_{2,2} \simeq$ $C_2$ | ||
$M_{2,3} \simeq$ $C_{16}\times \GL(2,3)$ | $G/M_{2,3} \simeq$ $C_2$ | 4 normal subgroups | |
$M_{2,4} \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_8)$ | $G/M_{2,4} \simeq$ $C_2$ | ||
$M_{3} \simeq$ $(C_4\times C_8) . C_2^4$ | 3 subgroups in one conjugacy class | ||
$M_{4} \simeq$ $C_{48}:C_2^3$ | 4 subgroups in one conjugacy class | ||
Maximal quotients: | $m_{2,1} \simeq$ $C_2$ | $G/m_{2,1} \simeq$ $C_{16}\times \GL(2,3)$ | 4 normal subgroups |
$m_{2,2} \simeq$ $C_2$ | $G/m_{2,2} \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_8)$ | ||
$m_{2,3} \simeq$ $C_2$ | $G/m_{2,3} \simeq$ $(C_2\times C_{16}) \times S_4$ | ||
$m_{2,4} \simeq$ $C_2$ | $G/m_{2,4} \simeq$ $\SL(2,3) . (C_2^2\times C_8)$ |