Properties

Label 1536.408556859
Order \( 2^{9} \cdot 3 \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{6} \)
$\card{Z(G)}$ \( 2^{6} \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$\SL(2,3) \rtimes (C_2^2\times C_{16})$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism group:Group of order 24576
Derived length:$4$

This group is nonabelian and solvable. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 8 12 16 24 48
Elements 1 55 8 104 56 352 64 512 128 256 1536
Conjugacy classes   1 11 1 20 7 64 8 96 16 32 256
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 3 4
Irr. complex chars.   64 96 64 32 256

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{2}=b^{3}=c^{2}=g^{2}=j^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_3\times C_{192})$ $\Aut(C_3\times C_{204})$

Homology

Abelianization: $C_{2}^{2} \times C_{16} $

Subgroups

Center: $Z \simeq$ $C_2^2\times C_{16}$ $G/Z \simeq$ $S_4$
Commutator: $G' \simeq$ $\SL(2,3)$ $G/G' \simeq$ $C_2^2\times C_{16}$
Frattini: $\Phi \simeq$ $C_2\times C_8$ $G/\Phi \simeq$ $C_2^2\times S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2\times Q_8\times C_{16}$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_{16})$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^3$ $G/S \simeq$ $C_8\times S_4$
2-Sylow subgroup: $P_{2} \simeq$ $(C_4\times C_8) . C_2^4$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $(C_2\times Q_8\times C_{16}) \rtimes C_3$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $\SL(2,3) \rtimes (C_2\times C_{16})$ $G/M_{2,2} \simeq$ $C_2$
$M_{2,3} \simeq$ $C_{16}\times \GL(2,3)$ $G/M_{2,3} \simeq$ $C_2$ 4 normal subgroups
$M_{2,4} \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_8)$ $G/M_{2,4} \simeq$ $C_2$
$M_{3} \simeq$ $(C_4\times C_8) . C_2^4$ 3 subgroups in one conjugacy class
$M_{4} \simeq$ $C_{48}:C_2^3$ 4 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_{16}\times \GL(2,3)$ 4 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $\SL(2,3) \rtimes (C_2^2\times C_8)$
$m_{2,3} \simeq$ $C_2$ $G/m_{2,3} \simeq$ $(C_2\times C_{16}) \times S_4$
$m_{2,4} \simeq$ $C_2$ $G/m_{2,4} \simeq$ $\SL(2,3) . (C_2^2\times C_8)$