Properties

Label 443520.a.63360.a1.a1
Order $ 7 $
Index $ 2^{7} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(63360\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(7\)
Generators: $\langle(1,18,6,2,12,14,17)(3,16,13,11,20,10,19)(4,5,8,15,21,22,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $M_{22}$
Order: \(443520\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{22}:C_2$, of order \(887040\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_7$
Normalizer:$C_7:C_3$
Normal closure:$M_{22}$
Core:$C_1$
Minimal over-subgroups:$F_8$$C_7:C_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$21120$
Möbius function$0$
Projective image$M_{22}$