Properties

Label 443520.a.7920.a1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,17)(3,12)(4,8)(6,20)(7,13)(9,15)(10,11)(14,16), (2,16)(4,6)(7,13)(8,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $M_{22}$
Order: \(443520\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{22}:C_2$, of order \(887040\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_8:C_3$
Normal closure:$M_{22}$
Core:$C_1$
Minimal over-subgroups:$F_8:C_3$
Maximal under-subgroups:$C_2^3$$C_7$

Other information

Number of subgroups in this conjugacy class$2640$
Möbius function$0$
Projective image$M_{22}$