Subgroup ($H$) information
Description: | $F_8$ |
Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Index: | \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$\langle(2,17)(3,12)(4,8)(6,20)(7,13)(9,15)(10,11)(14,16), (2,16)(4,6)(7,13)(8,20) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $M_{22}$ |
Order: | \(443520\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $M_{22}:C_2$, of order \(887040\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
$W$ | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Related subgroups
Centralizer: | $C_1$ | |
Normalizer: | $F_8:C_3$ | |
Normal closure: | $M_{22}$ | |
Core: | $C_1$ | |
Minimal over-subgroups: | $F_8:C_3$ | |
Maximal under-subgroups: | $C_2^3$ | $C_7$ |
Other information
Number of subgroups in this conjugacy class | $2640$ |
Möbius function | $0$ |
Projective image | $M_{22}$ |