Properties

Label 432.356.3.b1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{12}, c^{18}, b^{3}, c^{9}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}:D_{18}$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4\times D_{18}:C_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{12}:D_6$
Normal closure:$C_{12}:D_{18}$
Core:$D_4\times C_3^2$
Minimal over-subgroups:$C_{12}:D_{18}$
Maximal under-subgroups:$D_4\times C_3^2$$C_6\times D_6$$C_6\times D_6$$C_6\wr C_2$$C_6\wr C_2$$S_3\times C_{12}$$C_3\times D_{12}$$C_6\times D_4$$S_3\times D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_2\times D_{18}$