Subgroup ($H$) information
Description: | $C_3\times D_{12}$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ab^{3}, c^{12}, c^{9}, b^{2}, c^{18}$
|
Derived length: | $2$ |
The subgroup is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Ambient group ($G$) information
Description: | $C_{12}:D_{18}$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_4\times D_{18}:C_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $1$ |
Projective image | $C_2\times D_{18}$ |