Properties

Label 432.258.9.a1.a1
Order $ 2^{4} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \SD_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{6}, d^{9}, c^{2}d^{6}, c^{3}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3^2:\GL(2,3)$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times \SD_{16}$
Normal closure:$C_3^2:\GL(2,3)$
Core:$C_3\times Q_8$
Minimal over-subgroups:$C_{12}.D_6$$C_3\times \GL(2,3)$$C_3\times \GL(2,3)$$C_3\times \GL(2,3)$
Maximal under-subgroups:$C_3\times Q_8$$C_3\times D_4$$C_{24}$$\SD_{16}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$3$
Projective image$C_3:S_4$