Properties

Label 432.258.3.b1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \GL(2,3)$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{6}, d^{9}, c^{2}d^{6}, b, c^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_3^2:\GL(2,3)$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times \GL(2,3)$
Normal closure:$C_3^2:\GL(2,3)$
Core:$C_3\times \SL(2,3)$
Minimal over-subgroups:$C_3^2:\GL(2,3)$
Maximal under-subgroups:$C_3\times \SL(2,3)$$C_3\times \SD_{16}$$\GL(2,3)$$C_6\times S_3$
Autjugate subgroups:432.258.3.b1.b1432.258.3.b1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:S_4$