Subgroup ($H$) information
Description: | $C_5\times C_{105}$ |
Order: | \(525\)\(\medspace = 3 \cdot 5^{2} \cdot 7 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \) |
Generators: |
$a^{80}, b^{21}, b^{5}, a^{24}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 5$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{35}:C_{120}$ |
Order: | \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Automorphism Group: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times C_4\times F_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2\times C_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_4\times C_{12}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{35}:C_8$ |