Properties

Label 4200.o.40.c1.a1
Order $ 3 \cdot 5 \cdot 7 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{105}$
Order: \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Generators: $a^{80}, b^{5}, a^{24}b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{35}:C_{120}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_4\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times C_{420}$
Normalizer:$C_5\times C_{420}$
Normal closure:$C_5\times C_{105}$
Core:$C_{21}$
Minimal over-subgroups:$C_5\times C_{105}$$C_{210}$
Maximal under-subgroups:$C_{35}$$C_{21}$$C_{15}$
Autjugate subgroups:4200.o.40.c1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{35}:C_{40}$