Subgroup ($H$) information
Description: | $C_{105}$ |
Order: | \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \) |
Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \) |
Generators: |
$a^{80}, b^{5}, a^{24}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{35}:C_{120}$ |
Order: | \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_5:C_8$ |
Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Automorphism Group: | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times C_4\times F_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_5\times C_{420}$ | ||
Normalizer: | $C_{35}:C_{120}$ | ||
Complements: | $C_5:C_8$ | ||
Minimal over-subgroups: | $C_5\times C_{105}$ | $C_{210}$ | |
Maximal under-subgroups: | $C_{35}$ | $C_{21}$ | $C_{15}$ |
Other information
Möbius function | $0$ |
Projective image | $C_{35}:C_8$ |