Properties

Label 40960.yn.1.a1
Order $ 2^{13} \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.C_2^8:C_5$
Order: \(40960\)\(\medspace = 2^{13} \cdot 5 \)
Index: $1$
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(5,6)(7,8)(9,14)(10,13)(11,16)(12,15)(21,22)(23,24)(25,29)(26,30)(27,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a semidirect factor, nonabelian, and a Hall subgroup. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^5.C_2^8:C_5$
Order: \(40960\)\(\medspace = 2^{13} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}:C_{16}$, of order \(5242880\)\(\medspace = 2^{20} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_{2316}:C_{16}$, of order \(5242880\)\(\medspace = 2^{20} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5.C_2^8:C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed