Properties

Label 40960.yn
Order \( 2^{13} \cdot 5 \)
Exponent \( 2^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 5 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{20} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \)
Perm deg. $40$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11), (1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25), (1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39) >;
 
Copy content gap:G := Group( (1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11), (1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25), (1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39) );
 
Copy content sage:G = PermutationGroup(['(1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11)', '(1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25)', '(1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5386444918898174476241318223464861099340650230060183451209225435121504362023298062071559199851368400130966346318328489631233158769384356162532869210427574524886912779506219227766198974368081732492061821488439968260195775755424960832090031577133872353604309876736,40960)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.6; g = G.8; h = G.10; i = G.11; j = G.13; k = G.14;
 

Group information

Description:$C_2^5.C_2^8:C_5$
Order: \(40960\)\(\medspace = 2^{13} \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{2316}:C_{16}$, of order \(5242880\)\(\medspace = 2^{20} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 10
Elements 1 671 7520 16384 16384 40960
Conjugacy classes   1 12 67 4 4 88
Divisions 1 12 63 1 1 78
Autjugacy classes 1 11 47 4 4 67

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 20 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid f^{4}=g^{4}=h^{2}=i^{4}=j^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 512960, 495181, 172943, 1699742, 173476, 3390, 698043, 7409, 172175, 59181, 1364654, 143938, 216472, 38266, 1460, 845, 517459, 222465, 110591, 33829, 243, 78406, 4520887, 713237, 405027, 149681, 17087, 43533, 329, 645128, 4483509, 609303, 304677, 225171, 40945, 29199, 11867, 6193120, 872280, 364710, 182388, 130658, 16096, 6268, 1060, 458, 3548171, 2009292, 31373]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.2, G.3, G.4, G.5, G.6, G.8, G.10, G.11, G.13, G.14]); AssignNames(~G, ["a", "b", "c", "d", "e", "f", "f2", "g", "g2", "h", "i", "i2", "j", "k"]);
 
Copy content gap:G := PcGroupCode(5386444918898174476241318223464861099340650230060183451209225435121504362023298062071559199851368400130966346318328489631233158769384356162532869210427574524886912779506219227766198974368081732492061821488439968260195775755424960832090031577133872353604309876736,40960); a := G.1; b := G.2; c := G.3; d := G.4; e := G.5; f := G.6; g := G.8; h := G.10; i := G.11; j := G.13; k := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5386444918898174476241318223464861099340650230060183451209225435121504362023298062071559199851368400130966346318328489631233158769384356162532869210427574524886912779506219227766198974368081732492061821488439968260195775755424960832090031577133872353604309876736,40960)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.6; g = G.8; h = G.10; i = G.11; j = G.13; k = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5386444918898174476241318223464861099340650230060183451209225435121504362023298062071559199851368400130966346318328489631233158769384356162532869210427574524886912779506219227766198974368081732492061821488439968260195775755424960832090031577133872353604309876736,40960)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.6; g = G.8; h = G.10; i = G.11; j = G.13; k = G.14;
 
Permutation group:Degree $40$ $\langle(1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11), (1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25), (1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39) >;
 
Copy content gap:G := Group( (1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11), (1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25), (1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39) );
 
Copy content sage:G = PermutationGroup(['(1,28,40,20,15,2,27,39,19,16)(3,26,37,18,13,4,25,38,17,14)(5,30,34,24,10,6,29,33,23,9)(7,32,35,22,12,8,31,36,21,11)', '(1,16,23,38,29)(2,15,24,37,30)(3,13,21,39,32)(4,14,22,40,31)(5,10,20,35,27)(6,9,19,36,28)(7,11,18,34,26)(8,12,17,33,25)', '(1,18,28,13,35,2,17,27,14,36)(3,20,25,16,33,4,19,26,15,34)(5,21,29,11,38,6,22,30,12,37)(7,23,32,10,40,8,24,31,9,39)'])
 
Transitive group: 40T17177 40T17193 40T17357 40T17534 all 6
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^5$ . $(C_2^8:C_5)$ $C_2^4$ . $(C_2^5.C_2^4.C_5)$ $(C_2^6.C_2^3)$ . $(C_2^4:C_5)$ (2) $(C_2^5.C_2^4)$ . $(C_2^4:C_5)$ (6) all 11

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 23 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^4.C_2^4.C_2^4.C_5$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^5.C_2^6.C_2^2$ $G/G' \simeq$ $C_5$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^5$ $G/\Phi \simeq$ $C_2^8:C_5$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^5.C_2^6.C_2^2$ $G/\operatorname{Fit} \simeq$ $C_5$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^5.C_2^8:C_5$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^5$ $G/\operatorname{soc} \simeq$ $C_2^8:C_5$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^6.C_2^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$

Subgroup diagram and profile

Series

Derived series $C_2^5.C_2^8:C_5$ $\rhd$ $C_2^5.C_2^6.C_2^2$ $\rhd$ $C_2^5$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^5.C_2^8:C_5$ $\rhd$ $C_2^5.C_2^6.C_2^2$ $\rhd$ $C_2^6.C_2^3$ $\rhd$ $C_2^5$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^5.C_2^8:C_5$ $\rhd$ $C_2^5.C_2^6.C_2^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $88 \times 88$ character table is not available for this group.

Rational character table

The $78 \times 78$ rational character table is not available for this group.