Properties

Label 4056.bb.676.b1.a1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 13^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(676\)\(\medspace = 2^{2} \cdot 13^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{6}c^{8}d, b^{4}c^{7}d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_4\times S_3$
Normal closure:$C_{13}^2:C_6$
Core:$C_1$
Minimal over-subgroups:$C_{13}:C_6$$D_6$$C_{12}$$C_3:C_4$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$169$
Möbius function$-2$
Projective image$C_{13}^2:(C_4\times S_3)$