Properties

Label 4056.bb.4.b1.a1
Order $ 2 \cdot 3 \cdot 13^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}^2:C_6$
Order: \(1014\)\(\medspace = 2 \cdot 3 \cdot 13^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $b^{6}c^{4}d^{11}, cd^{2}, d, b^{4}c^{7}d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $F_{13}\wr C_2$, of order \(48672\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{13}^2:(C_4\times S_3)$, of order \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{13}^2:(C_4\times S_3)$
Minimal over-subgroups:$C_{13}^2:D_6$$C_{13}^2:C_{12}$$C_{13}^2:(C_3:C_4)$
Maximal under-subgroups:$C_{13}^2:C_3$$C_{13}:D_{13}$$C_{13}:C_6$

Other information

Möbius function$2$
Projective image$C_{13}^2:(C_4\times S_3)$