Properties

Label 4056.bb.312.a1.a1
Order $ 13 $
Index $ 2^{3} \cdot 3 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}$
Order: \(13\)
Index: \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
Exponent: \(13\)
Generators: $cd^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(338\)\(\medspace = 2 \cdot 13^{2} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{13}\times D_{13}$
Normalizer:$D_{13}^2.C_2$
Normal closure:$C_{13}^2$
Core:$C_1$
Minimal over-subgroups:$C_{13}^2$$C_{26}$$D_{13}$$D_{13}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:4056.bb.312.a1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_{13}^2:(C_4\times S_3)$