Properties

Label 4056.bb.3.a1.a1
Order $ 2^{3} \cdot 13^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{13}^2.C_2$
Order: \(1352\)\(\medspace = 2^{3} \cdot 13^{2} \)
Index: \(3\)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $a, b^{6}c^{4}d^{11}, cd^{4}, b^{3}, d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $F_{13}\wr C_2$, of order \(48672\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{res}(S)$$D_{13}\wr C_2:C_6$, of order \(8112\)\(\medspace = 2^{4} \cdot 3 \cdot 13^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_{13}^2.C_2$, of order \(1352\)\(\medspace = 2^{3} \cdot 13^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{13}^2.C_2$
Normal closure:$C_{13}^2:(C_4\times S_3)$
Core:$C_{13}^2:C_4$
Minimal over-subgroups:$C_{13}^2:(C_4\times S_3)$
Maximal under-subgroups:$C_{13}^2:C_4$$D_{13}^2$$C_{13}^2:C_4$$C_{26}:C_4$$C_{26}:C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_{13}^2:(C_4\times S_3)$