Properties

Label 40000.ji.2.d1
Order $ 2^{5} \cdot 5^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4:(C_2\times \OD_{16})$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Index: \(2\)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $f^{2}, ef^{4}, b, ce^{4}f^{8}, a^{2}, d^{2}ef^{8}, a, d^{5}, b^{2}cd^{6}e^{4}f^{8}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^4:(C_2^2\times \OD_{16})$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_2.C_2^5.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \)
$W$$C_5^4:(C_2\times \OD_{16})$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5^4:(C_2^2\times \OD_{16})$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_5^4:(C_2^2\times \OD_{16})$
Maximal under-subgroups:$C_5^4:(C_2^2\times C_4)$$C_5^4:(C_2\times C_8)$$C_5^4.\OD_{16}$$C_2\times C_5^2:\OD_{16}$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-1$
Projective image$C_5^4:(C_2^2\times \OD_{16})$