Subgroup ($H$) information
| Description: | $C_5^4:(C_2\times \OD_{16})$ | 
| Order: | \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) | 
| Index: | \(2\) | 
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Generators: | $f^{2}, ef^{4}, b, ce^{4}f^{8}, a^{2}, d^{2}ef^{8}, a, d^{5}, b^{2}cd^{6}e^{4}f^{8}$ | 
| Derived length: | $3$ | 
The subgroup is normal, maximal, a direct factor, nonabelian, and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_5^4:(C_2^2\times \OD_{16})$ | 
| Order: | \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \) | 
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^4.C_2.C_2^5.C_2^5.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \) | 
| $W$ | $C_5^4:(C_2\times \OD_{16})$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ | 
| Number of conjugacy classes in this autjugacy class | $8$ | 
| Möbius function | $-1$ | 
| Projective image | $C_5^4:(C_2^2\times \OD_{16})$ | 
