Properties

Label 40000.ji.20000.c1
Order $ 2 $
Index $ 2^{5} \cdot 5^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(2\)
Generators: $a^{2}bc^{2}d^{2}e^{3}f^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_5^4:(C_2^2\times \OD_{16})$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_2.C_2^5.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_{10}^2.C_2$
Normalizer:$D_{10}^2.C_2$
Normal closure:$C_2\times C_5^4:C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_{10}$$C_{10}$$D_5$$D_5$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$200$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_5^4:(C_2^2\times \OD_{16})$