Properties

Label 40000.ji.20000.a1
Order $ 2 $
Index $ 2^{5} \cdot 5^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(2\)
Generators: $f^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_5^4:(C_2^2\times \OD_{16})$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5^4:(C_2\times \OD_{16})$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $D_5^4.D_4:D_4$, of order \(640000\)\(\medspace = 2^{10} \cdot 5^{4} \)
Outer Automorphisms: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_2.C_2^5.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5^4:(C_2^2\times \OD_{16})$
Normalizer:$C_5^4:(C_2^2\times \OD_{16})$
Complements:$C_5^4:(C_2\times \OD_{16})$
Minimal over-subgroups:$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5^4:(C_2\times \OD_{16})$