Properties

Label 399300.k.39930.a1
Order $ 2 \cdot 5 $
Index $ 2 \cdot 3 \cdot 5 \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{10}, d^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and cyclic (hence elementary ($p = 2,5$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}^3:(C_5\times S_3)$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^3.C_3.C_{10}^2.C_2$
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}^2:C_{165}:C_{20}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Minimal over-subgroups:$C_{110}$$C_{110}$$C_{110}$$C_{110}$$C_{110}$$C_{110}$$C_{110}$$C_5\times C_{10}$$C_{30}$$C_{20}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3993$
Projective image$C_{11}^3:(C_5\times S_3)$