Properties

Label 399300.k.3630.a1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2 \cdot 3 \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{110}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{10}, b^{3}, d^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}^2:(C_5\times S_3)$
Order: \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_{11}\wr C_3:C_{20}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Minimal over-subgroups:$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{110}:C_5$$C_{330}$$C_{220}$
Maximal under-subgroups:$C_{55}$$C_{22}$$C_{10}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$363$
Projective image$C_{11}^3:(C_5\times S_3)$