Properties

Label 399300.k.1815.a1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 3 \cdot 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(1815\)\(\medspace = 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, b^{3}, a^{10}, d^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_{20}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_{11}\times C_{220}$
Normalizer:$C_5\times C_{11}^2:C_{20}$
Normal closure:$C_{11}\wr C_3:C_{20}$
Core:$C_{110}$
Minimal over-subgroups:$C_{11}\times C_{220}$$C_{11}:C_{220}$$C_{220}:C_5$$C_3:C_{220}$
Maximal under-subgroups:$C_{110}$$C_{44}$$C_{20}$

Other information

Number of subgroups in this autjugacy class$33$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-11$
Projective image$C_{11}^3:(C_5\times S_3)$