Properties

Label 399300.k.199650.a1
Order $ 2 $
Index $ 2 \cdot 3 \cdot 5^{2} \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(199650\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(2\)
Generators: $a^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}^3:(S_3\times C_5^2)$
Order: \(199650\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^3.C_{15}.C_{10}^2.C_2^3$
Outer Automorphisms: $D_{10}:C_{20}$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}^2:C_{165}:C_{20}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Minimal over-subgroups:$C_{22}$$C_{22}$$C_{22}$$C_{22}$$C_{22}$$C_{22}$$C_{22}$$C_{10}$$C_{10}$$C_6$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$19965$
Projective image$C_{11}^3:(S_3\times C_5^2)$