Properties

Label 399300.d.5324.a1
Order $ 3 \cdot 5^{2} $
Index $ 2^{2} \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{15}$
Order: \(75\)\(\medspace = 3 \cdot 5^{2} \)
Index: \(5324\)\(\medspace = 2^{2} \cdot 11^{3} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $b^{22}c^{6}d^{10}, d^{22}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{30}$
Normalizer:$D_6\times C_5^2$
Normal closure:$C_5\times C_{11}^3:C_{15}$
Core:$C_5$
Minimal over-subgroups:$C_5\times C_{11}^2:C_{15}$$C_{165}:C_5$$C_5\times C_{30}$$S_3\times C_5^2$
Maximal under-subgroups:$C_5^2$$C_{15}$$C_{15}$

Other information

Number of subgroups in this autjugacy class$1331$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_{11}^3:(S_3\times C_{10})$