Subgroup ($H$) information
| Description: | $D_6\times C_5^2$ |
| Order: | \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \) |
| Index: | \(1331\)\(\medspace = 11^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$a^{5}, a^{2}cd^{100}, d^{22}, d^{55}, b^{22}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}\wr C_3:C_{10}^2$ |
| Order: | \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^3.C_{15}.C_{10}^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $1331$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $C_{11}^3:(C_5\times S_3)$ |