Properties

Label 399300.d.484.a1
Order $ 3 \cdot 5^{2} \cdot 11 $
Index $ 2^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{165}:C_5$
Order: \(825\)\(\medspace = 3 \cdot 5^{2} \cdot 11 \)
Index: \(484\)\(\medspace = 2^{2} \cdot 11^{2} \)
Exponent: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Generators: $b^{22}c^{6}d^{10}, d^{22}, b^{3}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{30}$
Normalizer:$C_{330}:C_{10}$
Normal closure:$C_5\times C_{11}^3:C_{15}$
Core:$C_{55}$
Minimal over-subgroups:$C_5\times C_{11}^3:C_{15}$$C_{110}:C_{15}$$C_{165}:C_{10}$
Maximal under-subgroups:$C_{55}:C_5$$C_{165}$$C_{11}:C_{15}$$C_5\times C_{15}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_{11}^3:(S_3\times C_{10})$