Properties

Label 399300.d.13310.a1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2 \cdot 5 \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $d^{55}, d^{22}, b^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{110}:C_{15}$
Normalizer:$C_{330}:C_{10}$
Normal closure:$C_{11}^2:C_{30}$
Core:$C_{10}$
Minimal over-subgroups:$C_{11}^2:C_{30}$$C_{330}$$C_5\times C_{30}$$S_3\times C_{10}$
Maximal under-subgroups:$C_{15}$$C_{10}$$C_6$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$11$
Projective image$C_{11}^3:(C_5\times S_3)$