Properties

Label 399300.d.10.c1
Order $ 2 \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}\wr S_3$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}d^{55}, d^{10}, b^{3}, b^{22}, d^{22}, c$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{10}.C_2^4$
$W$$C_{11}^2:(C_5\times S_3)$, of order \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{11}\wr C_3:C_{10}^2$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{11}^3:(S_3\times C_5^2)$$C_{10}\times C_{11}\wr S_3$
Maximal under-subgroups:$C_{11}^2:C_{165}$$C_{11}^2:C_{110}$$C_{11}\wr S_3$$C_5\times C_{11}^2:S_3$$S_3\times C_{55}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$C_{11}^3:(S_3\times C_{10})$