Subgroup ($H$) information
| Description: | $C_{11}^3:(S_3\times C_5^2)$ |
| Order: | \(199650\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| Index: | \(2\) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Generators: |
$a^{5}d^{55}, cd^{50}, d^{22}, b^{22}, a^{2}, d^{10}, b^{3}$
|
| Derived length: | $3$ |
The subgroup is normal, maximal, a direct factor, nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}\wr C_3:C_{10}^2$ |
| Order: | \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^3.C_{15}.C_{10}^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{11}^3.C_{15}.C_{10}^2.C_2^3$ |
| $W$ | $C_{11}^3:(C_5\times S_3)$, of order \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $-1$ |
| Projective image | $C_{11}^3:(S_3\times C_{10})$ |