Properties

Label 399300.d.110.b1
Order $ 2 \cdot 3 \cdot 5 \cdot 11^{2} $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}^2:S_3$
Order: \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}d^{55}, b^{22}, c, d^{22}, d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}:C_{10}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_2^2$
$W$$C_{11}^2:(C_5\times S_3)$, of order \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{11}\wr C_3:C_{10}^2$
Complements:$C_{11}:C_{10}$ $C_{11}:C_{10}$ $C_{11}:C_{10}$ $C_{11}:C_{10}$ $C_{11}:C_{10}$ $C_{11}:C_{10}$
Minimal over-subgroups:$C_5\times C_{11}\wr S_3$$C_{11}^2:(S_3\times C_5^2)$$C_{10}\times C_{11}^2:S_3$
Maximal under-subgroups:$C_{11}^2:C_{15}$$D_{11}\times C_{55}$$C_{11}^2:S_3$$C_5\times S_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-11$
Projective image$C_{11}^3:(S_3\times C_{10})$