Properties

Label 39930.c.242.a1
Order $ 3 \cdot 5 \cdot 11 $
Index $ 2 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{165}$
Order: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Index: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Exponent: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 60 & 98 \\ 75 & 60 \end{array}\right), \left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5\times C_{11}\wr S_3$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_{20}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{165}$
Normalizer:$S_3\times C_{55}$
Normal closure:$C_{11}^2:C_{165}$
Core:$C_{55}$
Minimal over-subgroups:$C_{11}^2:C_{165}$$S_3\times C_{55}$
Maximal under-subgroups:$C_{55}$$C_{33}$$C_{15}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}^2:S_3$