Properties

Label 39930.c.726.a1
Order $ 5 \cdot 11 $
Index $ 2 \cdot 3 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{55}$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Index: \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 5,11$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_5\times C_{11}\wr S_3$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}^2:S_3$
Order: \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Automorphism Group: $C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times C_{11}\wr S_3$
Normalizer:$C_5\times C_{11}\wr S_3$
Complements:$C_{11}^2:S_3$
Minimal over-subgroups:$C_{11}\times C_{55}$$C_{11}\times C_{55}$$C_{11}\times C_{55}$$C_{165}$$C_{110}$
Maximal under-subgroups:$C_{11}$$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-363$
Projective image$C_{11}^2:S_3$