Properties

Label 39732.a.946.a1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2 \cdot 11 \cdot 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{21}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(946\)\(\medspace = 2 \cdot 11 \cdot 43 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rr} 32 & 9 \\ 34 & 19 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 25 & 34 \\ 17 & 18 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 29 & 21 \\ 22 & 13 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\PSL(2,43)$
Order: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(19866\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,43)$, of order \(79464\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
$\operatorname{Aut}(H)$ $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$W$$D_{21}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{21}$
Normal closure:$\PSL(2,43)$
Core:$C_1$
Minimal over-subgroups:$\PSL(2,43)$
Maximal under-subgroups:$C_{21}$$D_7$$S_3$

Other information

Number of subgroups in this conjugacy class$946$
Möbius function$-1$
Projective image$\PSL(2,43)$