Subgroup ($H$) information
Description: | $C_2^2\times C_{12}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(810\)\(\medspace = 2 \cdot 3^{4} \cdot 5 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,4)(2,3)(7,8,9)(10,11,12)(13,14,15), (1,2,4,3)(7,9,8)(10,12,11)(13,15,14) \!\cdots\! \rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $C_3^2:S_3\times S_6$ |
Order: | \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\AGL(2,3).A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $405$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_3:S_3\times S_6$ |