Properties

Label 38880.bf.810.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{12}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(810\)\(\medspace = 2 \cdot 3^{4} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4)(2,3)(7,8,9)(10,11,12)(13,14,15), (1,2,4,3)(7,9,8)(10,12,11)(13,15,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_3^2:S_3\times S_6$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\AGL(2,3).A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$C_{12}:C_2^3$
Normal closure:$C_3^2:S_3\times S_6$
Core:$C_3$
Minimal over-subgroups:$C_{12}\times D_6$$C_{12}:C_2^3$
Maximal under-subgroups:$C_2^2\times C_6$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$405$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3:S_3\times S_6$