Properties

Label 38880.bf.270.e1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,4,3)(7,15,10)(8,13,11)(9,14,12), (1,4)(2,3)(7,11,14)(8,12,15)(9,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^2:S_3\times S_6$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\AGL(2,3).A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^5:D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_6^2:C_2^3$
Normal closure:$C_3^2:S_3\times S_6$
Core:$C_3^2$
Minimal over-subgroups:$C_6^2.D_6$$C_6^2:C_2^3$
Maximal under-subgroups:$C_6\times D_6$$S_3\times C_{12}$$S_3\times C_{12}$$C_6\times C_{12}$$C_6:C_{12}$$S_3\times C_{12}$$S_3\times C_{12}$$C_2^2\times C_{12}$$C_4\times D_6$

Other information

Number of subgroups in this autjugacy class$540$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3:S_3\times S_6$