Properties

Label 3888.jh.27.b1.c1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,5,7)(6,9,8), (12,13), (10,11)(12,13), (10,13)(11,12), (1,4,2)(6,8,9), (1,9,4,6,2,8)(5,7)(10,13,11,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{12}:D_6$
Normal closure:$C_3^3:S_3\times S_4$
Core:$C_2^2$
Minimal over-subgroups:$C_6^2:D_6$$C_6^2:D_6$
Maximal under-subgroups:$C_6\times D_6$$C_6\wr C_2$$S_3\times C_{12}$$C_3\times D_{12}$$D_4\times C_3^2$$C_6\times D_6$$C_6\wr C_2$$C_6\times D_4$$S_3\times D_4$
Autjugate subgroups:3888.jh.27.b1.a13888.jh.27.b1.b1

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$