Subgroup ($H$) information
| Description: | $C_6\times D_6$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $\langle(10,13)(11,12), (1,9,4,6,2,8)(5,7)(10,13)(11,12), (1,4,2)(6,8,9), (3,5,7)(6,9,8), (10,11)(12,13)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^3:S_3\times S_4$ | 
| Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $\operatorname{res}(S)$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^3:S_3\times S_4$ | 
