Subgroup ($H$) information
| Description: | $C_3^3:D_6$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$a^{3}c^{3}, e^{2}, d^{2}e^{4}, e^{3}, bd^{4}e^{2}, c^{2}$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $(C_3\times C_6^2):S_3^2$ |
| Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_2\times C_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_6^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_3^3:C_3^2.Q_8.D_6$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^2:D_6^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $-2$ |
| Projective image | $S_3\times C_3^2:D_6$ |