Properties

Label 3888.fx.12.j1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_6$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}c^{3}, e^{2}, d^{2}e^{4}, e^{3}, bd^{4}e^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $(C_3\times C_6^2):S_3^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^3:C_3^2.Q_8.D_6$
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:D_6^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_3\times C_6^2):S_3^2$
Complements:$C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$
Minimal over-subgroups:$C_3^4:D_6$$(C_3\times C_6^2):S_3$$S_3\times C_3^2:D_6$$C_3^3:D_{12}$
Maximal under-subgroups:$C_6\times \He_3$$C_3^3:S_3$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$

Other information

Möbius function$-2$
Projective image$S_3\times C_3^2:D_6$