Properties

Label 3888.fx.6.i1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_{12}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}d^{3}, d^{2}e^{4}, c^{2}, c^{3}d^{3}, e^{2}, e^{3}, bd^{4}e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $(C_3\times C_6^2):S_3^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_3\times C_6^2):S_3^2$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_3^4:D_{12}$$C_6^2:S_3^2$
Maximal under-subgroups:$C_3^3:D_6$$C_3^3:D_6$$C_3^3:C_{12}$$C_3^2:D_{12}$$C_3^2:D_{12}$$C_3^2:D_{12}$

Other information

Möbius function$1$
Projective image$S_3\times C_3^2:D_6$