Subgroup ($H$) information
| Description: | $C_3^3:D_{12}$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{3}d^{3}, d^{2}e^{4}, c^{2}, c^{3}d^{3}, e^{2}, e^{3}, bd^{4}e^{2}$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $(C_3\times C_6^2):S_3^2$ |
| Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_6^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $S_3\times C_3^2:D_6$ |