Properties

Label 3888.fx.324.by1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, d^{3}, a^{2}d^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_3\times C_6^2):S_3^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^3$
Normalizer:$C_6^3$
Normal closure:$C_2^2\times C_3\wr S_3$
Core:$C_1$
Minimal over-subgroups:$C_6^2$$C_6^2$$C_6^2$$C_6^2$$C_6\times S_3$$C_2^2\times C_6$
Maximal under-subgroups:$C_6$$C_6$$C_6$$C_2^2$
Autjugate subgroups:3888.fx.324.by1.b13888.fx.324.by1.c13888.fx.324.by1.d13888.fx.324.by1.e13888.fx.324.by1.f1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$(C_3\times C_6^2):S_3^2$