Properties

Label 3840.bf.40.D
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,\mathbb{Z}/4)$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 19 & 10 \\ 10 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 6 & 15 \\ 15 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times F_5$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times F_5$
Normalizer:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Complements:$C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$ $C_2\times F_5$
Minimal over-subgroups:$C_5\times \GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^2\times A_4$$C_2\times S_4$$A_4:C_4$$C_2^2\wr C_2$$C_3:D_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$