Properties

Label 3840.bf.1.a1
Order $ 2^{8} \cdot 3 \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 6 & 15 \\ 15 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $(C_5\times A_4).C_2^4.C_2^6$
$W$$C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Complements:$C_1$
Maximal under-subgroups:$D_{10}\times \GL(2,\mathbb{Z}/4)$$C_2^3\times A_4\times F_5$$D_{10}.\GL(2,\mathbb{Z}/4)$$C_2^2\times F_5\times S_4$$D_{10}.\GL(2,\mathbb{Z}/4)$$(C_{10}\times A_4):C_4^2$$D_{10}.\GL(2,\mathbb{Z}/4)$$F_5\times \GL(2,\mathbb{Z}/4)$$C_2^3:D_4\times F_5$$C_6:D_4\times F_5$$C_2^6.D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$