Subgroup ($H$) information
| Description: | $D_5\times A_4$ |
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Index: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
10 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 10 \\
10 & 1
\end{array}\right), \left(\begin{array}{rr}
16 & 5 \\
15 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_4\times D_4$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \) |
| Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^4.C_2^6$ |
| $\operatorname{Aut}(H)$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) |
| $W$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$ |