Subgroup ($H$) information
| Description: | $A_4\times D_{10}$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
16 & 5 \\
15 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
10 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 10 \\
10 & 1
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$ |
| Order: | \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Outer Automorphisms: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times A_4).C_2^4.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times F_5\times S_4$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(64\)\(\medspace = 2^{6} \) |
| $W$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_2^2\times F_5\times S_4$ |