Properties

Label 384.17956.6.a1.a1
Order $ 2^{6} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 4 & 34 \\ 0 & 38 \end{array}\right), \left(\begin{array}{rr} 38 & 17 \\ 17 & 4 \end{array}\right), \left(\begin{array}{rr} 22 & 6 \\ 24 & 46 \end{array}\right), \left(\begin{array}{rr} 34 & 42 \\ 36 & 34 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, nonabelian, a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\GL(2,3):D_4$
Complements:$S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$\SL(2,3):D_4$$\SD_{16}:D_4$
Maximal under-subgroups:$C_2^2\times Q_8$$D_4:C_2^2$$C_4\times Q_8$$C_4\times D_4$$C_4:D_4$$C_2^2:Q_8$$C_4^2:C_2$

Other information

Möbius function$3$
Projective image$C_2^2\times S_4$