Properties

Label 1536.408641059
Order \( 2^{9} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{7} \)
$\card{Z(G)}$ \( 2^{6} \)
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 31 \)
$\card{\mathrm{Out}(G)}$ \( 2^{21} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_2^6 \times S_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:Group of order 30963778191360
Derived length:$3$

This group is nonabelian and solvable. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6
Elements 1 639 8 384 504 1536
Conjugacy classes   1 191 1 64 63 320
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 3
Irr. complex chars.   128 64 128 320

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{2}=b^{3}=c^{2}=d^{2}=e^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_2^2.\GL(2,\mathbb{Z}/4))$ $\Aut(C_2^2.\GL(2,\mathbb{Z}/4))$ $\Aut(C_2^2.\GL(2,\mathbb{Z}/4))$ $\Aut(C_2^2.\GL(2,\mathbb{Z}/4))$ all 67

Homology

Abelianization: $C_{2}^{7} $

Subgroups

Center: $Z \simeq$ $C_2^6$ $G/Z \simeq$ $S_4$
Commutator: $G' \simeq$ $A_4$ $G/G' \simeq$ $C_2^7$
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^6 \times S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^8$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $C_2^6 \times S_4$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^8$ $G/S \simeq$ $S_3$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^7 . C_2^2$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_2^8 \rtimes C_3$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $S_4\times C_2^5$ $G/M_{2,2} \simeq$ $C_2$ 126 normal subgroups
$M_{3} \simeq$ $C_2^7 . C_2^2$ 3 subgroups in one conjugacy class
$M_{4} \simeq$ $D_6\times C_2^5$ 4 subgroups in one conjugacy class
Maximal quotients: $m_{2} \simeq$ $C_2$ $G/m_{2} \simeq$ $S_4\times C_2^5$ 63 normal subgroups
$m_{4} \simeq$ $C_2^2$ $G/m_{4} \simeq$ $D_6\times C_2^5$