Properties

Label 384.17956.1.a1.a1
Order $ 2^{7} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,3):D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 16 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 36 \\ 6 & 25 \end{array}\right), \left(\begin{array}{rr} 22 & 45 \\ 27 & 46 \end{array}\right), \left(\begin{array}{rr} 4 & 34 \\ 0 & 38 \end{array}\right), \left(\begin{array}{rr} 35 & 0 \\ 0 & 35 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 16 \end{array}\right), \left(\begin{array}{rr} 34 & 42 \\ 36 & 34 \end{array}\right), \left(\begin{array}{rr} 38 & 17 \\ 17 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup.

Ambient group ($G$) information

Description: $\GL(2,3):D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^6\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\GL(2,3):D_4$
Complements:$C_1$
Maximal under-subgroups:$C_2^2\times \GL(2,3)$$\SL(2,3):D_4$$C_2.\GL(2,\mathbb{Z}/4)$$\GL(2,3):C_2^2$$C_4\times \GL(2,3)$$\SL(2,3):D_4$$Q_8.D_{12}$$\SD_{16}:D_4$$D_6.D_4$

Other information

Möbius function$1$
Projective image$C_2^2\times S_4$