Properties

Label 373248.cq.729.a1
Order $ 2^{9} $
Index $ 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4^2:D_4$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(729\)\(\medspace = 3^{6} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\langle(1,17)(2,4)(3,9)(5,10)(6,11)(7,18)(8,12)(13,16)(14,15)(19,20,22,23)(21,26,25,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $3$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_6^4.D_6\wr C_2$
Order: \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2^{10}.D_4^2.C_2$, of order \(131072\)\(\medspace = 2^{17} \)
$W$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$D_4^2:D_4$
Normal closure:$C_6^4.D_6\wr C_2$
Core:$C_2^4$

Other information

Number of subgroups in this autjugacy class$729$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.D_6\wr C_2$