Subgroup ($H$) information
| Description: | $C_{11}^2:(D_6\times C_5^2)$ |
| Order: | \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
| Index: | $1$ |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Generators: |
$a^{5}, cd^{20}, a^{2}, d^{22}, d^{55}, d^{10}, bcd^{20}$
|
| Derived length: | $3$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}^2:(D_6\times C_5^2)$ |
| Order: | \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_{15}.C_{10}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{11}^2.C_{15}.C_{10}.C_2^4$ |
| $\card{W}$ | \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | not computed |