Properties

Label 36300.o.1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Index: $1$
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, cd^{20}, a^{2}, d^{22}, d^{55}, d^{10}, bcd^{20}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{10}.C_2^4$
$\card{W}$\(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_6\times C_5^2)$
Complements:$C_1$
Maximal under-subgroups:$C_{10}\times C_{11}^2:C_{15}$$C_5\times C_{11}^2:(C_5\times S_3)$$C_{10}\times C_{11}^2:C_{10}$$C_{10}\times C_{11}^2:S_3$$C_2\times C_{11}^2:(C_5\times S_3)$$D_6\times C_5^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image not computed