Properties

Label 36300.o.2.a1
Order $ 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(18150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Index: \(2\)
Exponent: not computed
Generators: $d^{55}, d^{10}, a^{2}, d^{22}, bcd^{20}, cd^{80}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, metabelian (hence solvable), and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_6\times C_5^2)$
Complements:$C_2$
Minimal over-subgroups:$C_{11}^2:(D_6\times C_5^2)$
Maximal under-subgroups:$C_5\times C_{11}^2:C_{15}$$C_{10}\times C_{11}^2:C_5$$C_{10}\times C_{11}^2:C_3$$C_2\times C_{11}^2:C_{15}$$C_5\times C_{30}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image not computed